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Abstract

Optimal quantization has been recently revisited in multi-dimensional numerical
integration (see [18]), multi-asset American option pricing (see [2]), control theory (see
[19]) and nonlinear filtering theory (see [20]). In this paper, we enlighten some numerical
procedures in order to get some accurate optimal quadratic quantization of the Gaussian
distribution in one and higher dimensions. We study in particular Newton method in
the deterministic case (dimension d = 1) and stochastic gradient in higher dimensional
case (d ≥ 2). Some heuristics are provided which concern the step in the stochastic
gradient method. Finally numerical examples borrowed from mathematical finance are
used to test the accuracy of our Gaussian optimal quantizers.
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1 Introduction

Although optimal quantization has been extensively investigated for more than fifty years in
fields such as Signal Processing and Information Theory (see [11, 13]), it has been recently
revisited in the field of Numerical Probability for numerical integration in high dimension
(see [18]), multi-asset American option pricing (see [2, 1, 3, 4]) but also in Control Theory
(see [19]) and Nonlinear Filtering Theory (see [20])(see also [21] for a survey of applications
of optimal quantization methods in finance). In all these fields of application, the access to
some very accurate approximation of optimal quantization is crucial. This access has been
made possible by the increasing power of modern computers: one can now massively process
on a standard personal computer some numerical methods based on massive probabilistic
simulation. The most popular one being the regular Monte Carlo method. The aim of this
paper is to enlighten the numerical procedures used to get optimal quadratic quantization
of random vectors, with a special emphasis on Gaussian vectors.

Let X be a random vector on a probability space (Ω,F ,P) taking its values in Rd.
We denote by PX its distribution on Rd. Quantization consists in approximating X by a
random vector q(X) taking finitely many values in Rd. Let q(Rd) = {x1, . . . , xN }. Among
all Borel functions taking their values in the set {x1, . . . , xN }, one specifies the so-called
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Voronoi N -quantizers defined by

qvor(ξ) =
N∑

i=1

xi 1C(xi)(ξ), ξ ∈ Rd,

where {C(xi)}1≤i≤N is a Borel partition of Rd satisfying

C(xi) ⊂ {ξ ∈ Rd | |ξ − xi| ≤ |ξ − xj |, j = 1, . . . , N}.

Let p ≥ 1 and X ∈ Lp. One easily checks that these Voronoi N–quantizers minimize
the Lp quantization error (to the power p), i.e.

E |X − qvor(X)|p = min
{
E |X − q(X)|p, q : Rd Borel−→ {x1, . . . , xN }

}
.

From now on, we will only consider Voronoi N–quantizers (and so we will often drop the
“Voronoi” term). For these Voronoi N–quantizers, the Lp–error (to the power p) induced
by replacing X by its quantizer q(X) reads

E|X − qvor(X)|p =
∫

Rd

min
1≤i≤N

|xi − ξ|pPX (dξ)(1.1)

The right-hand-side of the above equality defines a (symmetric) continuous function x 7→
DX,p

N (x) on (Rd)N of the variable x := (x1, . . . , xN ). Such a N -tuple x will often be called
N–quantizer as well. The aim of Lp-optimal quantization is to find some optimal quantizer
which minimizes the functionDX,p

N over (Rd)N (there is always some, see, e.g. [13]). Optimal
quadratic quantization, on which we focus in this paper, stands for p = 2.

Let us illustrate by a simple example an application of optimal quantization to nu-
merical integration: one can write, for a regular enough function f and a quantizer x :=
(x1, . . . , xN ):

E f(X) =
N∑

i=1

PX(C(xi))f(xi) +
N∑

i=1

df(x) · E
(
(xi −X)1

C(xi)
(X)

)
(1.2)

+2nd order terms.

The first sum in the right-hand-side of the equality can be easily computed provided one
knows the xi’s and the PX -“mass” of their Voronoi cells. Then, one can see that, when
for p = 2, the first order necessary condition for optimality in (1.1) implies that all the
terms E((xi −X)1

C(xi)
(X)), i = 1, . . . , n, are 0. This improves the numerical accuracy of

the approximation of E(f(X)).
In many cases where the random vector X of interest in (1.2) is the d-dimensional

Brownian motion BT at some positive time T (e.g. the pricing of an European option in the
Black and Scholes model), the crucial step amounts, modulo an appropriate dilatation, to
optimally quantize the Normal distribution N (0; Id). The aim of this paper is to describe
in full details some numerical procedures performing optimal quadratic quantization of
Gaussian random vectors. We mean by that to give some heuristics concerning efficient
choices for the parameters in different gradient-based optimization algorithms proposed to
minimize (1.1): Newton’s method (in one dimension), a fixed point-like method known as
Lloyd’s method I (see [14]) and stochastic gradient method (see [8]).

Stochastic gradient methods are based on the integral representation of the gradient of
the criterion to be minimized (this is the case of the criterion DX,2

N defined by (1.1)). The
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rate of convergence of stochastic gradient methods is ruled by a Central Limit Theorem
(CLT). The rate of convergence of stochastic gradient descents is ruled by a Central Limit
Theorem (CLT). When the descent step of the procedure is settled to provide the best
possible rate, then the variance in the CLT is proportional to the inverse of the lowest
eigenvalue of the Hessian d2DX,2

N (x?) at the limiting value x?.
Hence, we can see that the ill-conditioned nature of d2DX,2

N (x?) is linked to the slowness
of the stochastic algorithm. One verifies that this is a crucial problem in practical imple-
mentations of such stochastic gradient procedures. This is the reason why we first studied
the case of the uniform distribution U([0, 1]) over the unit interval for which everything can
be computed analytically:

min
x∈(Rd)N

DX,2
N (x) = DX,2

N (x?) =
1

2N
with x? =

(
2k − 1

2N

)

1≤k≤N

,

and d2DX,2
N (x?) is, up to a normalizing factor, the three points-discretized Laplacian oper-

ator which is known to be ill-conditioned. This tells us that the uniform law is some sense
the most difficult case for the numerical experiments. When dealing with more general
distributions, this is a hint to explain and overcome the numerical difficulties encountered
to compute the components of an optimal quantizer close to the modes of the distribution:
around these modes, the distribution behaves locally as the uniform distribution. From this
study, we will be in position to derive some heuristics concerning the descent step in the
stochastic gradient including in higher dimension for the Normal distribution (see Section
3).

The paper is organized as follows. In Section 2, after some definitions, we recall in
Theorem 2.1 the asymptotic bound concerning the infimum in (1.1) when N becomes large.
Then we recall general facts about the stochastic gradient algorithm and give necessary
conditions of convergence in Theorem 2.4 (see [8]). In Section 3, we proceed to the numerical
implementation of Newton’s Method for the one dimensional case and stochastic gradient
in higher dimension (up to 10). In Section 4, we propose some numerical experiments with
an example borrowed to mathematical finance. It consists in pricing Put and Put-Spread
European options on a geometrical index of Black & Scholes assets using some optimal
quadratic quantizers of a d-dimensional Normal distribution for d ∈ {2, . . . , 6}. This is
based upon the above formula (1.2). Its main purposes are to test from a numerical point
of view the accuracy of the optimal quantizer obtained in Section 3. Subsequently, it is a
way to validate our heuristics concerning the different optimization procedures depicted in
Section 3. To this end, we carry out in Section 4 a short comparison with the Monte Carlo
method. Several classes of functions are involved depending on their convexity structure
and their smoothness. Indeed, as pointed out in Section 2, numerical integration of convex
function via optimal quantizer yields a lower bound of the true value. That is why numerical
integration of the difference of two convex functions via optimal quantization must yield a
better accuracy. Our numerical experiments tend to show that being the difference of two
convex functions is more prominent than smoothness. Moreover, in this case, the numerical
integration via optimal quantization leads to good results both in terms of relative error in
percentage and in term of absolute error when we compare it with the standard deviation of
the Monte Carlo estimator. In fact, it successfully competes with the Monte Carlo method
up to 4-dimension as predicted by theoretical error bounds and seems quite satisfactory even
in 5-dimension. Nevertheless, we emphasize that the purpose of this section is essentially
to test the accuracy of the optimal quantizer. It is clear that, as far as high dimensional
numerical integration is concerned, say d ≥ 6, Monte Carlo method is especially relevant
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when we want to balance accuracy with computational cost. The natural field of application
of the quantization method is the computation of a huge number of integrals of regular
functions with respect to the same distribution, in medium dimensions (say 1 ≤ d ≤ 4 or
d = 5).

2 Notations and preliminaries

We denote by | · | the Euclidean norm on Rd and for every Borel set A ⊂ Rd, we denote by
1A its indicator function.

2.1 Quantization of random vector

Let X be a square integrable Rd-valued random vector defined on a probability space
(Ω,F ,P). Let x := (xi)1≤i≤N be a N -tuple in Rd and let q : Rd → {x1, . . . , xN} be any
Borel function. The {x1, . . . , xN}-valued random vector q(X) is called a q-quantization of
X. The induced quadratic error ‖X − q(X)‖2 is called (quadratic) q-quantization error.

One easily shows that, among all possible {x1, . . . , xN}-valued functions q, all those
defined by

qvor(ξ) :=
N∑

i=1

xi1C(xi)(ξ), ξ ∈ Rd,

where {C(xi)}1≤i≤N is a Borel partition of Rd satisfying

C(xi) ⊂ {ξ ∈ Rd | |ξ − xi| ≤ |ξ − xj |, j = 1, . . . , N}
minimize the quadratic quantization error. That is

‖X − qvor(X)‖2 = min
{
‖X − q(X)‖2 , q : Rd Borel−→ {x1, . . . , xN}

}
.

Any such partition {C(xi)}1≤i≤N of Rd is called a Voronoi tessellation of the N -tuple
x and the corresponding function qvor a Voronoi N -quantizer. When all the components
of the N -tuple x are pairwise distinct, each cell C(xi) contains xi, its closure is convex and
its boundary is included in finite union of hyperplanes. Any qvor-quantization of X where
qvor is a Voronoi N -quantizer is called a Voronoi N -quantization of X. It is denoted X̂x

(or simply X̂ when there is no ambiguity). For notational simplicity the N -tuple x itself
will often be called (Voronoi) N -quantizer. So, such a Voronoi quantization reads

X̂x :=
N∑

i=1

xi1C(xi)(X).

The resulting quadratic quantization error, to the power 2, that is E |X − X̂x|2, is
called quadratic distortion (this terminology comes from Information Theory and Signal
processing and was developed in the early 1950’s) and is denoted DX

N (x). If PX denotes
the distribution of X, it reads

DX
N (x) := E|X − X̂x|2 =

N∑

i=1

E(1C(xi)(X)|X − xi|2)

=
∫

Rd

min
1≤i≤N

|xi − ξ|2 PX (dξ).
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The notation is consistent since the distortion only depends on the N -tuple x and (the
distribution of) X. Furthermore, when PX is continuous, the Voronoi quantization X̂x

itself is P-essentially unique.
One crucial feature is that the distortion function x 7→ DX

N (x) is continuous, and always
reaches (at least) one minimum, at some N -tuple x∗ having pairwise distinct components.
Let us denote

DX
N := min

x∈(Rd)N
DX

N (x).

Such an optimal quantizer lies in the convex hull of the support of PX . Furthermore,
it is easy to establish that this minimum DX

N decreases to 0 as the size N of the optimal
quantizer goes to infinity (see e.g. [13, 18] for a proof of these basic properties). The rate
of convergence to 0 is a more challenging problem, elucidated in several steps by Zador,
Bucklew & Wise and finally Graf & Luschgy (see [13]). It is given by the following theorem.

Theorem 2.1 Assume X ∈ L2+ε(Ω,A,P) for some ε > 0. Set ϕ := dP
X

dλd
the Radon-

Nikodym density of the absolutely continuous part of PX with respect to the Lebesgue measure
λd on Rd. Then

lim
N
N2/dDX

N = Jd‖ϕ‖ d
d+2

(2.1)

where ‖ϕ‖r = (
∫
Rd |ϕ|rdλd)1/r for any r > 0. In particular Jd is the limit when X ∼

U([0, 1]d) and satisfies Jd = min
N

N2/dD
U([0,1]d)
N .

The true value of Jd is unknown when d ≥ 3 but one knows that Jd ∼ d
2πe (J1 = 1

12 and
J2 = 5

18
√

3
) (see [13]).

It is of high interest to have access to aN -tuple x∗ with minimal possible distortion since
it provides the best possible quadratic approximation of a random vector X by a random
vector taking (at most) N values. This is the purpose of optimal quantization which will
need in higher dimension to use stochastic procedure of optimization exposed below.

But before getting into these optimization procedures, let us illustrate on a simple
example how quantization of random vectors can be used for numerics, namely numerical
integration.

2.2 Numerical integration by quantization

The idea is simply to approximate the distribution PX on Rd by that of X̂x on Borel
functions f ∈ L1(Rd,PX ) and to use the distortion to evaluate the resulting error. This
means comparing

E f(X) =
∫

Rd

f(ξ)PX (dξ) and E f(X̂) =
∫

Rd

f(ξ)P bX (dξ) =
N∑

i=1

f(xi)PX (C(xi)).

From a computational point of view, the numerical computation of the second quantity
needs to have access not only to the (hopefully optimal) quantizer x but also to the PX -
mass of the cells of its Voronoi tessellation. One must include this phase in any procedure
devised to compute an optimal quantizer (see [18]).

• The basic result is quite simple: if f is Lipschitz continuous, then
∣∣∣∣
∫

Rd

f(ξ)PX (dξ)−
∫

Rd

f(ξ)P bX (dξ)
∣∣∣∣ = |Ef(X)− Ef(X̂)| ≤ E|f(X)− f(X̂)|
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≤ [f ]LipE|X − X̂|
≤ [f ]Lip

√
DX

N (x).

This shows that if x(N), N ≥ 1, denotes a sequence optimal N -quantizers, then P
X(N)

weakly converges toward PX at optimal rate. (Of course, the weak convergence also holds
for any sequence X(N) of N -tuples such that DX

N → 0 as N goes to infinity).

•When the function f is smoother – differentiable with a Lipschitz continuous derivative
Df – this error bound can be significantly improved still using the distortion. This relies
on a noticeable regularity property of the distortion DX

N (x) as a function of the N -tuple
x: it is continuously differentiable on the open set of N -tuples x having pairwise distinct
components satisfying

PX (∪1≤i≤N∂C(xi)) = 0(2.2)

(holds for every x if PX is continuous), and

∂DX
N

∂xi
(x) = 2

∫

C(xi)
(xi − ξ)PX (dξ), 1 ≤ i ≤ N.(2.3)

Furthermore, one shows (see [13]) that any optimal N -quantizer x∗ has pairwise distinct
components and satisfies (2.2) provided that |supp(PX )| ≥ N (regardless of the continuity
of PX ). Consequently x∗ is a stationary quantizer i.e.

∫

C(xi)
(x∗i − ξ)PX (dξ) = 0, 1 ≤ i ≤ N.(2.4)

This also holds for any locally optimal quantizer lying inside the support of PX .
Numerical integration using stationary quantizers has further properties: assume that

f is continuously differentiable with a Lipschitz continuous differential df (1) and that x
is a stationary quantizer. Then, the fundamental formula of calculus shows that, for every
i∈ {1, . . . , N} and every u∈ C(xi)

|f(ξ)− f(xi)− df(xi).(ξ − xi)| ≤ [df ]Lip |ξ − xi|2

so that, integrating with respect to PX on every C(xi) and summing over i yields

∣∣∣∣
∫

Rd

f(ξ)PX (dξ) −
N∑

i=1

f(xi)PX (C(xi))−
N∑

i=1

df(xi).
∫

C(xi)
(xi − ξ)PX (dξ)

︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣∣∣

≤ [df ]Lip

∫

Rd

min
1≤i≤N

|ξ − xi|2PX (dξ)

so that ∣∣∣∣∣
∫

Rd

f(ξ)PX (dξ)−
N∑

i=1

f(xi)PX (C(xi))

∣∣∣∣∣ ≤ [df ]LipD
X
N (x).(2.5)

When f is twice differentiable with a bounded Hessian d2f , then the above inequality
holds with 1

2‖d2f‖∞ instead of [df ]Lip . If x is an optimal N -quantizer, then DX
N (x) ¿

1The dual of Rd is identified with Rd so that dg is identified with ∇g from now on.
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√
DX

N (x) for N large enough since DX
N = o(

√
DX

N ) as N → ∞. (Also note that DX
N ≤

DX
1 = Var(X).)

• A second property of stationary quantizers is of interest for numerical integration: it
involves convex functions. One starts from the stationary equality (2.4) which also reads,
if x denotes a stationary quantizer

xi =
1

PX (C(xi))

∫

C(xi)
ξ PX (dξ), 1 ≤ i ≤ N.(2.6)

Following the definition of X̂x, this in turn reads

X̂x = E(X|X̂x).

Now the conditional Jensen inequality applied to any convex function f yields

N∑

i=1

f(xi)PX (C(xi)) = Ef(X̂x) ≤ Ef(X).(2.7)

since
Ef(X̂x) = Ef(E(X|X̂x)) ≤ E (E(f(X)|X̂x)) = Ef(X).

Numerical integration by quantization using a stationary quantizer always yields a lower
bound of the true value Ef(X). For some further error bounds when the function f is
simply locally Lipschitz continuous, see [10].

2.3 Stochastic gradient method

Let E be a finite dimensional R-vector space, U a nonempty open subset of E and let µ be
a probability measure on Rd. Suppose we are given a continuously differentiable function
g : U → R with differential dg : U → E.

Definition 2.2 We say that dg has an integral representation on U with respect to µ if
there exists a function dG : U × Rd → E such that dG(x, .)∈ L1(µ) for every x∈ U and

dg(x) =
∫

Rd

dG(x, ξ)µ(dξ).

Usually, such a representation formula is obtained by differentiation of a representation

formula g(x) :=
∫

Rd

G(x, ξ)µ(dξ) for g. The principle of stochastic gradient method is to

use the function dG and some independent simulated copies of µ-distributed random vectors
to approximate recursively a zero of dg. This procedure can be substituted to the standard
gradient descent when the distribution µ can easily be simulated whereas the computation
of dg(x) is out of reach because it requires the computation of integrals with respect to µ
in higher dimension. Let us be more specific now. Let (Ω,F ,P) be a probability space.
Following [8] (chapter 2), we have the following definition.

Definition 2.3 Let g be a twice differentiable function from E to R such that dg has an
integral representation on E with respect to µ. We call stochastic gradient method in E
for g, a triplet of sequences ((Xn)n≥0, (ξn)n≥1, (γn)n≥1) with values respectively in E, Rd

and [0,+∞[ satisfying for every n ≥ 1
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Xn+1 = Xn − γn+1 dG(Xn, ξn+1)(2.8)

(ξn)n≥1 i.i.d. with L(ξ1) = µ(2.9)

γn > 0 for every n ≥ 1 and
∑

n≥1

γn = +∞.(2.10)

The sequence (γn)n≥1 is called the step or gain parameter sequence.

This definition is motivated by the following convergence theorem. This result is classical
and many variants and generalizations can be found in the literature devoted to Stochastic
Approximation Theory ([8], [16], among others).

Theorem 2.4 (a) A.s. convergence: Let g : E → R+ be a continuously differentiable
function whose differential dg admits an integral representation on E with respect to µ

dg(x) =
∫

Rd

dG(x, ξ)µ(dξ).

Assume that dg and dG satisfy

lim
|x|→+∞

g(x) = +∞ and dg is Lipschitz continuous(2.11)

∫

Rd

|dG(x, ξ)|2µ(dξ) = O(g(x)) as |x| → ∞.(2.12)

Let ((Xn)n≥0, (ξn)n≥1, (γn)n≥1) be a stochastic gradient method with a positive gain
parameter sequence satisfying

∑

n≥1

γn = +∞ and
∑

n≥1

γ2
n < +∞.(2.13)

Then g(Xn) a.s. converges to some nonnegative random variable g∞ ∈ R+ and Xn a.s.
converges toward some random connected component χ∗ of {dg = 0} ∩ {g = g∞}.

In particular, if {dg = 0} = {x∗}, then

Xn −→ x∗ a.s. as n→ +∞.(2.14)

(b) Rate of convergence (CLT): Let x∗ be an equilibrium point of {dg = 0}. Assume
that x∗ is attractive, that is g is is twice differentiable at x∗ and d2g(x∗) is positive definite.
Assume that the “noise” is nondegenerated at x∗, namely that

Γ∗ :=
∫

Rd

dG(x∗, ξ) t(dG(x∗, ξ))µ(dξ) is positive definite,(2.15)

where tA is for transpose of A.
Specify the gain parameter sequence as follows

∀n ≥ 1, γn =
a

b+ nα
, a, b > 0, 0 < α < 1.

If α = 1 assume furthermore that the lowest eigenvalue λmin of d2g(x∗) satisfies

8



a >
1

2λmin
.(2.16)

Then, the above a.s. convergence is ruled on the convergence set {Xn → x∗} by the following
Central Limit Theorem

Xn − x∗√
γn

Lstably−→ N (0,Σ),(2.17)

with Σ :=
∫ +∞

0
e−(d2g(x∗)−ρId)uΓ∗e−(d2g(x∗)−ρId)u du and ρ = 1

2a1{α=1}.

The convergence in (2.17) means that for every bounded continuous function and every
A∈ F ,

E
(
1{Xn→x∗}∩A f(

Xn − x∗√
γn

)
)

n→∞−→ E
(
1{Xn→x∗}∩A f(

√
Σ ζ)

)
, ζ ∼ N (0; Id).

Remark 2.5 • The above formulation is derived from [8]: claim (a) is the combination of
Theorem 2.III.4 p.61 and section 3.III.2, p.102. Claim (b) comes from section III., p.160.
• When g is only defined on an (open) domain U ⊂ E, the above convergence still holds
when the gain parameter sequence (γn)n≥0 takes its values in (0, γmax] provided that U is
convex, that x 7→ x− γmaxdG(x, ξ) maps U into U for every ξ∈ Rd and that

lim
d(x,∂U)→0

g(x) = +∞.

This last assumption on g can be relaxed if U is bounded and if g and dg admit a
continuous extension on U and if dG(., ξ), ξ∈ Rd admit an extension on U which extends
the representation property on U .
• The matrix N (0; Σ) is the invariant distribution of the Ornstein-Uhlenbeck diffusion

dYt = −(d2g(x∗)− ρId)Yt dt+
√

Γ∗ dWt.

• It follows from (2.17) that the fastest possible rate of convergence is
√
n. It is obtained

with step sequence γn = a
b+n , n ≥ 1, a large enough: indeed

√
n(Xn−x∗) weakly converges

toward N (0; aΣ). One easily checks that aΣ goes to 0 as a→∞. So the best rate of conver-
gence is obtained for arbitrary large a. Except that the number of iterations needed for this
rate of convergence to show up becomes greater and greater. So, an empirical approach
is necessary to fit some “reasonable” coefficient a. This could be e.g. (in 1-dimension)
a = 1/g

′′
(x∗) which then yields a 1/g

′′
(x∗) asymptotic variance term. Unfortunately, this

quantity is usually out of reach given the fact that we are looking for x∗. Some averaging
methods can theoretically provide a solution to that problem but empirical tests were not
decisive for the optimal quadratic quantization problem we are dealing with.

Uniform distribution U([0, 1]): We will illustrate Theorem 2.4 with the quadratic
distortion for uniform distribution on [0, 1] (see [9]). Set E = RN , d = 1, and

g(x1, . . . , xN ) :=
1
2

∫ 1

0
min

1≤i≤N
(xi − ξ)2 du.
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Function g is clearly symmetric, so one may restrict on the open set U := {(x1, . . . , xN ), 0 <
x1 < x2 < . . . < xN < 1}}. On U , g is differentiable and dg has an integral representa-
tion with respect to du given by (2.3). Now C(xi) = [xi−1/2, xi+1/2], 1 ≤ i ≤ N , with
xi+1/2 := xi+xi+1

2 , 1 ≤ i ≤ N − 1, x1/2 = 0 and xN+1/2 = 1. With these conventions, one
checks that

dg(x1, . . . , xN ) =

(∫ xi+1/2

xi−1/2

(xi − ξ) dξ

)

1≤i≤N

.

These integrals can be computed so that

∂g

∂xi
(x) =

1
8

(2xi − (xi+1 + xi−1)) (xi+1 − xi−1), 2 ≤ i ≤ N − 1,

∂g

∂x1
(x) =

1
8

(3x1 − x2) (x1 + x2),

∂g

∂xN
(x) =

1
8

(3xN − xN−1 − 2) (2− (xN + xN−1)).

The computation of the Hessian d2g of g is straightforward and we have for a given
N -tuple x and for any i such that 2 ≤ i ≤ N − 1 :

d2g(x)i,i−1 = −xi − xi−1

4
, d2g(x)i,i+1 = −xi+1 − xi

4
,

d2g(x)i,i =
xi+1 − xi−1

4
.

One checks that dg(x∗) = 0 iff x∗i = 2i−1
2N for i = 1, . . . , N . Finally, g satisfies all the

assumptions of Theorem 2.4 (with γmax = 1). Furthermore, the eigenvalues of d2g(x∗) can
also be computed and we find

λi =
1
N

sin2

(
πi

2N

)
, i ∈ {1, . . . , N}.

so that

λmin =
1
N

sin2
( π

2N

)
≈ π2

4N3
when N is large.

Thus, Theorem 2.4 shows that a Central Limit Theorem holds for the a.s. convergence
Xn → x∗ provided a > 2N3/π2.

Remark 2.6 •One checks that the Hessian d2g(x∗) at x∗ is the discrete Laplacian obtained
by finite difference on the interval [0, 1] up to a multiplicative factor N/4. Here, the ill-
conditioned nature of such an operator is directly linked to the (slow) rate of convergence
of the algorithm (2.8) through Theorem 2.4. Indeed, the number n of trials necessary to
get γn close to 0 increases with N .

• This example suggests that when implementing a stochastic gradient to the distortion
function of a more general distributions, special attention has to be paid to the points
which are close to a mode of the (probability density function of the) distribution µ. There,
roughly speaking, the distribution mimics the uniform distribution because of the lack of
injectivity and this seems to impose as strong assumptions on the step parameter (γn)n≥1

as for the uniform distribution.
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Partial extension to non uniform distributions on the real line: To con-
clude this section, let us mention some further results about the quadratic distortion in 1-
dimension. One may restrict the distortion function to the open set U := {(x1, . . . , xN ), m <
x1 < x2 < . . . < xN < M} where m := inf supp(µ) and M := sup supp(µ).

– First, when PX is absolutely continuous with a log-concave probability density func-
tion, then DX

N has a unique stationary – hence optimal – quantizer x∗ i.e. {d(DX
N ) = 0} =

{x∗}. This is e.g. the case of the Normal distribution µ(dξ) := exp(−ξ2/2)/
√

2π.
– If, furthermore, µ has a compact support, then the above stochastic gradient procedure

a.s. converges toward x∗ (see [14, 17]).
– Some examples of non-uniqueness of the stationary quantizer can be found e.g. in [13].

For some examples of uniqueness when the probability density function is not log-concave,
see [10].

– No regular a.s. convergence result holds for non compactly supported distributions
PX , essentially because the distortion does not go to infinity when |x| goes to infinity.

In higher dimension, uniqueness of stationary quantizers clearly often fails, so Theo-
rem 2.4 must be applied in its general form.

3 Optimal quantization of distributions on Rd. The case of
the Normal distribution

Let d ≥ 1, X be a Rd-valued random vector having an absolutely continuous distribution µ =
PX . Let N ≥ 1 be an integer (in this section DX

N
will always denote the distortion function

related to the distribution µ). In this section we deal with the following optimization
problem:

(P) ≡
{

Find a N -tuple x∗ = (x∗1, . . . , x
∗
N ) s.t.

DX
N

(x∗1, . . . , x
∗
N ) ≤ DX

N
(x1, . . . , xN ), ∀x = (x1, . . . , xN ) ∈ (Rd)N ,

where DX
N

: (Rd)N → R+ is defined by

DX
N

(x) =
N∑

i=1

∫

Rd

min
1≤i≤N

|xi − ξ|2 µ(dξ) =
N∑

i=1

∫

C(xi)
|xi − ξ|2 µ(dξ),(3.1)

where (C(xi))i=1,...,N denotes the Voronoi tessellation of the N -tuple x in Rd.
We have seen that DX

N
is continuously differentiable on the set of N -tuples having

pairwise distinct components (see (2.3)) and that every solution x∗ of (P) is a stationary
quantizer hence satisfying (2.6).

If one looks at problem (P) from a strictly deterministic point of view, several ap-
proaches can be processed essentially gradient based methods (including Newton’s method)
and fixed point methods.

• The gradient descent approach is classical and relies on formula (2.6) for the derivative.
One set

x0 := x and xn+1 = xn − γ

n
d(DX

N
)(xn)

for a rate parameter γ∈ (0, 1). One may show, that under assumption (2.12) of Theorem 2.4
it does converge to some zero x∗ of d(DX

N
). It also does with a small enough constant step

γn = γ > 0 instead of γ
n (with a better rate, if convergence does occur).

11



Newton’s method (see paragraph 3.1 below for the scalar Normal distribution) requires
to compute the Hessian d2(DX

N
): this is done in [9] for quite general 1 and 2-dimensional

absolutely continuous distributions.
• The fixed point approach was introduced by Lloyd (in 1-dimension) and consists in

writing the following recursive algorithm (so-called Lloyd’s method I, see [14]) from the
stationarity Equation (2.6): starting from a N -tuple x, one defines recursively a sequence
{xn}n≥0 such that





x0 := x

xn+1
i :=

1
µ(C(xn

i ))

∫

C(xn
i )
ξ µ(dξ), ∀i = 1, . . . , N.

(3.2)

(with µ = PX ). If one set X̂n+1 := X̂xn+1
, one easily checks that Equation (3.2) implies

that
X̂n+1 = E(X | X̂n), n ≥ 0.

The very definition of conditional expectation as an orthogonal projection on the space of
square integrable σ(X̂n)-measurable random variables shows that

‖X − X̂n+1‖2 = ‖X − E(X|X̂n)‖2 = min
{
‖X − Z‖2 , Z∈ L2(σ(X̂n),P)

}
< ‖X − X̂n‖2

(except if X̂n = E(X|X̂n)) i.e. n 7→ ‖X − X̂n‖2 is decreasing.
In 1-dimension, when µ is has a strictly log-concave density function, it is established

in [14] that x 7→
(

1
µ(C(xn

i ))

∫
C(xn

i ) ξ µ(dξ)
)

1≤i≤N
is a contraction mapping and hence admits a

unique fixed point x∗ toward which Lloyd’s method I converges exponentially fast (this was
in fact the first proof for uniqueness of the stationary quantizer in that setting). In higher
dimension, the convergence of the procedure is not clearly established in the literature.

As soon as d ≥ 2, the processing of both methods described above becomes quickly
intractable since we have to compute numerically some d-dimensional integrals (on some
the elements of the Voronoi tesselation). Furthermore, one checks (see [18]) that the sta-
tionary solution of (3.2) is usually not unique in dimension d ≥ 2. As suggested above, the
dimension 1 can be investigated apart since, then, everything can be efficiently computed
in both methods. This is the main reason why, in higher dimensions, one needs to look for
stochastic procedures instead of deterministic ones.

From now on, we will focus on the Normal distribution µ = N (0; Id), defined for every
Borel set A of Rd, by

µ(A) =
∫

A
exp

(
−|ξ|

2

2

)
λd(dξ)
(2π)d/2

.

We will denote by erf(y) =
1√
2π

∫ y

−∞
exp(−u2/2) du its distribution function in 1D.

3.1 Newton’s method for 1-dimensional Normal distribution

3.1.1 Description of the method

In this subsection, we still set d = 1, V := RN and U := {(x1, . . . , xN ), x1 < x2 < . . . <
xN}}. Let N ≥ 2. We can then compute in an pseudo-explicit way the real number DX

N
(x),

the vector d(DX
N

)(x)∈ RN and the N × N -matrix d2(DX
N

)(x) using the tabulation of the
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distribution function erf of the scalar Normal distribution in R (see [9] for more general
1D-distributions). Set xj±1/2 := (xj + xj±1)/2, j = 1, . . . , N − 1, x1/2 = 0 and xN+1/2 = 0.
Some elementary computations yield, for every x∈ RN , and every i, j∈ {1, . . . , N},

DX
N

(x) =
N∑

j=1

∫ xj+1/2

xj−1/2

(xj − ξ)2 exp(−ξ2/2)
dξ√
2π
,(3.3)

=
N∑

j=1

(
(1 + x2

j )(erf(xj+1/2)− erf(xj−1/2))

− 1√
2π

(xj+1/2 exp(−x2
j+1/2/2)− xj−1/2 exp(−x2

j−1/2/2))

+
2√
2π
xj(exp(−x2

j+1/2/2)− exp(−x2
j−1/2/2))

)
,

∂DX
N

∂xi
(x) = xi(erf(xi+1/2)−erf(xi−1/2))+(exp(−x2

i+1/2/2)−exp(−x2
i−1/2/2))/

√
2π,(3.4)





∂2DX
N

∂xi∂xi−1
(x) = − 1

4
√

2π
(xi − xi−1) exp(−x2

i−1/2/2),

∂2DX
N

∂x2
i

= erf(xi+1/2)− erf(xi−1/2)−
1

4
√

2π
(xi+1 − xi) exp(−x2

i+1/2/2)

− 1
4
√

2π
(xi − xi−1) exp(−x2

i−1/2/2)

∂2DX
N

∂xi∂xi+1
(x) = − 1

4
√

2π
(xi+1 − xi) exp(−x2

i+1/2/2),

(3.5)

We are now able to implement Newton’s method in order to find the (single) zero of d(DX
N

)
in RN . Thus, starting from x0∈ RN , we compute recursively

xn+1 = xn − [d2(DX
N

)(xn)]−1 · d(DX
N

)(xn)(3.6)

(so we need to invert at every step the matrix d2(DX
N

)(xn)).

3.1.2 Numerical results

Computations produced N -optimal quantizers x∗ until DX
N

(x∗) is equal to 0.25× 10−4 (for
N ≈ 330). Then we can say that for such a size

min
i6=j

|x∗i − x∗j | ≤ 2
∫

Rd

min
1≤i≤N

|x∗i − ξ|µ(dξ) ≤ 2
√
DX

N
(x∗)) ≈ 10−2,

Let us emphasize the importance of the choice of the initial conditions. Thus, we observe
that, even for symmetric initial vectors, some components collapse or are rejected far from
the others. The following choice gives good results: x0

k := −2 + 2(2k − 1)/N , 1 ≤ k ≤
N . Figure 1 displays n 7→ − log10(|d(DX

N
)(xn)|) for N = 300. The Frobenius norm of

d2(DX
N

)(xn) is also drawn (thin lines). We can see that even if the problem (P) is not a
quadratic optimization problem, it becomes quickly quadratic and then Newton’s algorithm
converges very quickly (theoretically in one step). In Figure 2 below, we check graphically
the quality of the quantizer obtained after convergence of the method by drawing the
“weight function” x∗i 7→ µ(C(x∗i )), i = 1, . . . , N (for N = 50 and N = 300). We rely on
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the following result established in [7] which says that optimal N -quantizers of the scalar
Normal distribution satisfy

µ(C(x∗i )) ∼
1
N

exp(−(x∗i )
2/3)∫

R exp(−ξ2/3)dξ
as N →∞.

(uniformly on compact sets with respect to x∗i ). This result also holds for more general
scalar distributions µ with (positive) density function g and so can be used to test the

adequacy of a large size quantizer: it says that µ(C(x∗i )) ∼
1
N

g(x∗i )
2/3

∫
R g(ξ)

2/3dξ
. It holds as a

conjecture in higher dimension in the following form

µ(C(x∗i )) ∼
1
N

g(x∗i )
2/(d+2)

∫
R g(ξ)

2/(d+2)du
.

3.2 Stochastic methods in higher dimension

3.2.1 The CLV Q algorithm and its companion procedures

It follows from (2.3) that, if we denote by ξ a Rd-valued Normally distributed random
variable,

d(DX
N

)(x) = E (1C(xi)(ξ)(xi − ξ)).

Subsequently, the (Rd)N -valued stochastic gradient procedure for DX
N

used in this subsec-
tion can be written as

Xn+1 = Xn − γn+11C(Xn
i )(ξ

n+1)(Xn
i − ξn+1)(3.7)

or, equivalently, if we define i0(n+ 1) as the integer such that ξn+1 ∈ C(Xn
i0(n+1)),





Xn+1
i = Xn

i − γn+1(Xn
i − ξn+1) if i = i0(n+ 1)

Xn+1
i = Xn

i if i 6= i0(n+ 1).
(3.8)

This procedure is known as the Competitive Learning Vector Quantization algorithm (CLV Q).
More recently, it also appeared in the literature as the Kohonen algorithm with 0 neighbour
(the initialization of the procedure will be shortly discussed below in subsection 3.2.2). It
can be decomposed in two phases:

Competitive phase: Selection of the “winning index” i0(n+1) using a closest neighbour
search.

Learning phase: Updating of the winning component by a homothety centered at ξn+1

with ratio (1− γn+1).

From a numerical point of view the most time consuming task is to compute the winner
index that is the component Xn

i which is the closest to ξn+1. Some fast (approximate)
procedures for the searching of this “nearest neighbour” have been designed (see [12] chap-
ter 10.4, p.332 and chapter 12.16, p.479).

An attractive feature of this procedure is that, as a by-product, one can compute the
µ-masses µ(C(xi)), i = 1, . . . , N of the Voronoi cells and the distortion. To evaluate them,
one simply increments a counter kn

i as follows:

kn+1
i = kn

i + 1{i=i0(n+1)}, i = 1, . . . , N.
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Then kn
i /n → µ(C(x∗i )) on the event {Xn → x∗} as n goes to infinity. Other “on line”

approximation procedure for these weights involve the gain parameter like γn

αn+1
i = αn

i + γn+1(1{i=i0(n+1)} − αn
i ), α0

i = 1/N, i = 1, . . . , N.

which converges toward µ(C(x∗i )) on {Xn → x∗} as well.
Concerning the distortion, one proceeds similarly by setting

DX,n+1
N

= DX,n
N

+ |Xn
i0(n+1) − ξn+1|2, DX,0

N
= 0.

so that DX,n
N

/n → DX
N

(x∗) on the event {Xn → x∗} as n goes to infinity. One can also
update using the step sequence (γn)n≥0 like for the weights.

A slowlier and less sophisticated procedure consists in freezing the CLVQ procedure for
n large enough and to process afterwards a standard Monte Carlo simulation.

After the processing of the CLV Q procedure, one may refine the produced N -quantizer
by processing MLloyd randomized Lloyd’s method I. By randomized Lloyd’s method I, we
mean that all expectations w.r.t. to the Normal random vectors in Equation (3.2) are
computed by a (short) Monte Carlo simulation. Usually MLloyd ≈ 10.

3.2.2 Heuristic specifications for the CLV Q procedure and illustrations

We will now turn the discussion about three kinds of problems which arise in practise.
The first one concerns the quantization of a distribution near its modes (when some). The
second one concerns the quantization of non compactly supported distributions. The third
problem is the initialization of both the quantizer and the step.

Concerning the first point, it has been pointed out in Remark 2.6 that not any parameter
sequence (γn)n≥0 can be chosen here. In fact to take into account the mode of the Normal
d-dimensional distribution, one essentially specifies the step as if we wish to quantize the
uniform distribution on [0, 1]d. We adopt the following heuristic: we infer from the uniform
quantization of [0, 1] with N1/d points our choice of step γn for the uniform quantization
of [0, 1]d with N points. Consequently the parameter sequence (γn)n≥0 will be set equal to

γn = γ0
a

a+ γ0b n
,(3.9)

where a and b are equal to

a = 4N1/d, b = π2N−2/d.(3.10)

Thus γn ∼ a
bn ∼ 4N3/d

π2 n
so that γn > 2N3/d

π2 n
which is the critical step for the uniform

distribution to get a Central Limit Theorem for large enough n. This explains our choice
for the ratio a/b. The balance between a and b (in particular a À b) implies that the
procedure first behaves like a constant step algorithm. Now, the constant step version of
the procedure is known to be positively (even geometrically) recurrent (see [5]) so that
it visits every open set of the state space, especially the attracting basin of the optimal
quantizer. Hopefully it may remain in it when γn finally goes to 0. Some simulated
annealing version of the procedure can be implemented instead of this (almost) constant
step phase. However it seems not to give significant results. Let us illustrate the choice
of a and b in 1-dimension. In Figure 3, we have represented two different results for two
different choices of the parameter γn when N = 100. In both cases, we have computed 107
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trials in order to be sure that we get convergence. The value of the distortion obtained are
very close in the two cases. In Figure 3 a), we have taken γ0 = 1, a = 400 and b = 0.1. The
counters {ki} are plotted as function of the quantizer {xi}. We can see that the distribution
obtained is far from the Normal distribution. In Figure 3 b), γ0, a are the same as above
but now b = 10−3 which is close to π2/104.

Concerning the second problem, the simulation of points with too large norms may
cause dramatic effects on the CLV Q procedure when the step is not yet small enough
(cf. Eq. (3.7)). In order to avoid this, we will (first) simulate some spherically truncated
Normal variables (calibrating the threshold radius so as to keep at least 99% of the mass).
This truncation has a stabilizing effect on the procedure. Then, to get a quantization of
the original Normal distribution, one can complete the optimization by processing once the
randomized Lloyd’s method I with nontruncated Normally distributed random numbers.
One verifies that, when the number of points is large, this only affects the location of the
peripheral points. On the other hand, as expected, it slightly increases the distortion (but
it produces more accurate results for numerical integration of course). In Figure 6 are
displayed 2D quantizers with N = 500. In Figure 6 (a) the depicted quantizer has been
obtained using an extended splitting initialization method described below and truncated
simulated Normal random variables. Its distortion is DX

N
((a)) = 7.08(−3). The quantizer

depicted in Figure 6 (b) has been obtained from that in (a) by simply processing one
randomized Lloyd’s method I with a nontruncated Normal distribution as described in
(3.2). Its distortion is DX

N
((b)) = 8.55(−3).

Let us come now to the initialization of the N -quantizer in the CLV Q procedure. When
N is small (N ≤ 10) we adopted a random initialization so that X0 ∼ (N (0; Id))⊗N (2).
When N gets larger we passed to the so-called splitting initializing method, consisting in
adding one further point (usually the optimal 1-quantizer i.e. the origin 0Rd) in order to
obtain the starting quantizer of the CLV Q procedure with N +1 components. This N +1-
quantizer is not optimal. So, we then processed a CLV Q algorithm (3.7). In Figure 5, we
compare the N -quantizer (N = 14) obtained from a splitting method (in (a)) based on the
13-quantizer depicted in the former Figure 4 on one hand and from a random (Normal)
initialization (in (b)) on the other hand. Two “pseudo”-locally optimal quantizers seem to
exist simultaneously. The added component at 0Rd has moved the pentagon into a hexagon
whereas in (b) the fourteenth point has moved to the outside circle. In fact both 14-
quantizers have not the same distortion: DX

N
((a)) = 2.38(−1) and DX

N
((b)) = 2.35(−1). So

the 14-quantizer in (a) is only a local minimum. This emphasizes that, in higher dimension,
the distortion function has a more intricate shape than in 1-dimension. This also shows
that the splitting method may provide only sub-optimal stationary quantizers. Overall, it
turns out to be a good compromise between stability and efficiency.

The splitting initializing method can be extended to the initialization of aN+N ′ CLV Q
procedure by simply “aggregate” an optimal N ′-quantizer to an optimal N -quantizer, N ′ ¿
N . This has been done successfully up to d = 10 to cut down computation time when
dealing with quantizers having many components (we set N ′ = 10 if 100 ≤ N ≤ 1000 and
N ′ = 100 if N ≥ 1 000).

Finally, as far as splitting methods are concerned, the step parameter γ0 is chosen equal
either to the square root of the quadratic distortion computed at the last step or to 1 if the

2Other choices are possible taking into account some results about random quantization (see [6]) which
could suggest to sample (X0

i )1≤i≤N following the (Gaussian) probability distribution whose density is pro-

portional to (f⊗N
d )

d
d+2 distribution where fd is the density of the Normal distribution on Rd.
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distortion is greater than 1. This choice is suggested (or motivated) by the inequality

min
i 6=j

|xi − xj | ≤ 2E|X − xi| ≤ 2(E|X − xi|2)1/2.

As a matter of fact, since we start from an optimal N -quantizer, this choice seems quite
appropriate to preserve the past computations in the splitting method.

In Figure 8 is depicted a 1000-quantizer of N (0, I3) in 3-dimension. The distortion is
DX

N
= 5.45(−2).

3.2.3 Numerical and geometrical features of optimal quantizers in dimension
greater than 4.

To evaluate the quality of a computed N -quantizer in dimension d ≥ 4 we can no longer
use the graphic approach either directly or using the µ-masses of the Voronoi cells like for
1-dimensional distributions.

Concerning the purely numerical aspects, we rely on Inequality (2.7) for convex functions
which says that

N∑

i=1

f(xi)µ(C(xi)) ≤
∫
fdµ

for any stationary N -quantizer x = (x1, . . . , xN ). Thus, as far as Normal distribution
is concerned, i.e. µ = N (0; Id), one may choose the convex function f(x) := |x|2 and
reject any N -quantizer x such that

∑
1≤i≤N |xi|2 µ(C(xi)) > d. One can refine this test

by considering other convex functions like f(x) := (w|ej)2, j = 1, . . . , d where (e1, . . . , ed)
denotes the canonical basis of Rd, f(x) = |x|1+ρ, etc.

Concerning the geometrical aspects, we computed the norms of each component in Rd

and sorted them in increasing order. These curves are displayed in Figure 9. In (a), we can
distinguish four regions of slow growth for N = 1220, the first one around 100, the second
one between 200 and 400, the third one between 500 and 800 and the last beyond 800. It
suggests that the mass seems to be located on a finite number of spheres (4). In (b), this
number decreases to 3. In (c), it is 2 and in (d) there is only one flat line beyond 100. The
conclusion is that the mass of the Gaussian measure tends to be more and more localized
as dimensions increases. This is related with the fact that, by the strong Law of the Large
Numbers, if Xd ∼ N (0, Id) then |Xd|2 ∼ d as d → ∞: a χ2 distribution with d degrees
of freedom tends to be concentrated (with a suitable normalization) on a sphere when d
increases.

4 Evaluation of a Put Spread European option

The aim of this section is to test the optimal quantizers that we obtained by the numerical
methods described in subsection 3.2.2 in dimensions 2 ≤ d ≤ 6. Simultaneously, we aim to
illustrate the performances of vector quantization for numerical integration. That is why
we carry out a short comparison between quantization method and Monte Carlo method
on a simple numerical integration problem.

The strong Law of Large Number implies that, given a Normally distributed random
vector X and a sequence of i.i.d. random vectors (ξk)k≥1 with common Normal distribution
N (0; Id),

P(dω)-a.s.
f(ξ1(ω)) + · · ·+ f(ξN (ω))

N

N→+∞−→ E(f(X)) =
∫

Rd

f(ξ) exp (−|ξ|2/2)
dξ

(2π)d/2
.
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for every f ∈ L1(Rd,PX ). The Monte Carlo method consists in generating on a computer
a path (ξk(ω))k≥1 to compute the above Gaussian integral. Roughly speaking, the Law of
the Iterated Logarithm says that if f is square integrable, the above convergence a.s. holds
at a

σ(f(X))

√
log logN

N

rate where σ(f(X)) is the standard deviation of f(X). When f is twice differentiable, this
is to be compared to the error bound provided by (2.5) when using a quadratic optimal
N -quantizer x∗ := (x∗1, . . . , x

∗
N ), namely

[df ]LipD
N (0;Id)
N ≈

(
J2,d(1 + 2/d)1+d/2[df ]Lip

)
N−2/d.

Consequently the dimension d = 4 appears as the critical dimension for the numerical
integration of such functions by quantization for a given computational complexity (quan-
tization formulae involving higher order differentials yield better rates): we assume that
the optimal quantizers have been formerly computed and that the computation time of a
(Gaussian) random number or a weight is negligible with respect to the computation of a
value of f .

The test is processed in each dimension d with four random variables gi(X), X ∼
N (0; Id), i = 0, 1, 2, 3, 4 where the gi’s are five functions with compact support satisfying
respectively

– g0 is a (bounded) interval indicator (hence discontinuous);
– g1 is Lipschitz continuous and the composition of two convex functions;
– g2 is twice differentiable and the composition of two convex functions;
– g3 is difference of two convex functions (via Call-Put parity) and is Lipschitz contin-

uous;
– g4 is difference of two convex functions (via Call-Put parity) and is twice differentiable.

The test functions are borrowed from the classical option pricing toolbox in Mathemat-
ical Finance: one considers d traded assets S1, . . . , Sd, following a d-dimensional Black &
Scholes dynamics. We assume that these assets are independent (this is not very realistic
but corresponds to the most defavourable case for quantization). We also assume that
S1

0 = s0 > 0, i = 1, . . . , d and that the d assets share the same volatility σi = σ > 0. It is
classical background that then, at maturity T > 0,

Si
T = s0 exp

(
(r − σ2

2
)T + σ

√
T Xi

)
, i = 1, . . . , d.

then one considers, still at time T , the geometric index

IT = (S1
T . . . S

d
T )1/d = I0 exp

(
(r − σ2

2d
)T+

σ
√
T√
d

X1 + · · ·+Xd

√
d

)
with I0 = s0 exp

(
−σ

2(d− 1)
2d

T

)
.

Then, one specifies the random variables gi(ξ) as follows

g1(X) = e−rT (K1 − IT )+ Put(K1, T ) payoff

g3(X) = e−rT (K2 − IT )+ − e−rT (K1 − IT )+, K1 < K2, Put-Spread(K1,K2, T ) payoff.
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The random variables are the payoffs of a Put option with strike price K1 and a Put-spread
option with strike prices K1 < K2 respectively, both on the geometric index IT . Some
closed forms for E g1(X) and E g2(X) are given by the Black & Scholes formula, namely

E g1(X) = π(I0,K1, r, σ, T ) and E g3(X) = ψ(I0,K1,K2, r, σ, T )

with π(x,K, r, σ, T ) = Ke−rT erf(−d2)− I0 erf(−d1),

d1 =
log(x/K) + (r + σ2

2d )T

σ
√
T/d

, d2 = d1 − σ
√
T/d

and ψ(x,K1,K2, r, σ, T ) = π(x,K2, r, σ, T )− π(x,K1, r, σ, T ).

Then, one sets

g2(X) = e−rT/2π(IT
2
,K1, r, σ, T/2),

g4(X) = e−rT/2ψ(IT
2
,K1,K2, r, σ, T/2).

The random variables g2(X) and g4(X) have the distributions of the (discounted) premia
at time T/2 of the Put(K1, T ) and of the Put-Spread(K1,K2, T ) respectively. Functions g2
and g4 are C∞ and using the martingale property of the discounted premia yields

E g2(X) = π(I0,K1, r, σ, T ) and E g4(X) = ψ(I0,K1,K2, r, σ, T ).

Finally we specify g0 as the “hedge at maturity” function of the Put-Spread option, so that

g0(X) = −e−rT IT

I0
1{IT∈[K1,K2]}.(4.1)

The numerical specifications of the functions gi’s are as follows:

s0 = 100, K1 = 98, K2 = 102, r = 5%, σ = 20%, T = 2.(4.2)

Finally, let xN = (xN
j ) be the N–optimal quantizer of X. We will compute the quantized

versions of Egi(X), i = 0, . . . , 4:

E gi(X̂) =
N∑

j=1

PX (Cj(xN )) gi(xN
j ),(4.3)

where X̂ denotes the Voronöı quantization of ξ. The comparison with the Monte Carlo
estimator

Ê gi(X)
N

=
1
N

N∑

k=1

gi(ξk), ξk i.i.d., ξ1 ∼ N (0; Id),(4.4)

is carried out as follows: we computed (a proxy of the) the standard deviation ̂σ(gi)(X)
N

of the above estimator (4.4) using a M = 10 000 trial Monte Carlo simulation and we
compared it with the quantization error.

• Graphical tests (dimensionality effect): one sets

Absolute error(N) = |B&S Reference value− Quantized value(N)|.
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In the figures 10 and 11 below is drawn the graph of the N 7→ Absolute error(N) in a log-
log scale for functions g2 and g4 in dimensions d = 2, 3, 4, 5, 6, its least square regression
line (dotted line) and the log(N) 7→ −1

2 log(N) + log ̂σ(gi(X))
N

(continuous line). The
theoretical slope of the regression line should be 1/d or 2/d according to the regularity
of the function gi. In the smooth case, this theoretical 2/d slope appears in the convex
case (g2, see Figure 10) but is significantly improved in the case of the difference of two
convex functions (g4, see Figure 11). In the Lipschitz continuous setting (corresponding
to functions g1 and g3 not depicted here), one observes that the slopes are closer to 2/d
than to 1/d: this is probably due to the fact that functions g1 and g3 are “essentially”
smooth except for one single point. This is in fact a very common situation in applications.
Furthermore, one verifies in Figure 11 (e) that, in the case of the difference of two convex
functions, numerical quantization behaves better than the Monte Carlo method – for the
accuracy threshold set at one standard deviation – in dimension d = 6 as long as N is
lower than a critical number N6,c. This is a very common feature of the method which may
justify in some special cases the use of optimal quantization for numerical integration in
dimensions higher than d = 4 (when many integrals have to be computed with respect to
the same distribution measure).

• Numerical tests: In Table 1 below we extract some of the above results to provide
numerical values for the errors. In the second column are displayed the B&S price using
the numerical values specified in (4.2). In the third and fourth columns are displayed the
quantized values computed owing to (4.3) and the relative errors with respect to the B&S
price. Finally, in the two last columns, we have written down a proxy of the standard
deviation of estimator (4.4) and the ratio

|B&S Reference value − Quantized value(N)|
̂σ(gi(X))

N

to measure the error induced by the quantization in the scale of the MC estimator standard
deviation. The lines of Table 1 represent the different functions gi labelled with respect to
their structures and their smoothness.

Table 1 illustrates a phenomenon widely observed when integrating functions by quan-
tization: differences of convex (DiffConv) functions behave better than (composition of)
convex (Conv) functions, C1

Lip (in fact C∞) functions behave better than Lipschitz contin-
uous (Lip) functions, as predicted by (2.5). These numerical tests suggest that being the
difference of two convex functions is more prominent than smoothness. The behaviour of
quantized integration along discontinuous functions (like the indicator function g0, Disc)
seems to highly depend on the integrated function itself and it seems difficult to draw
general rules at this stage.
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Figure 1: n 7→ log10 |dDX
N

(xn)| for N = 300.
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Figure 2: PX -mass of the Voronoi cells C(x∗i ) as a function of the quantizer components x∗i
(¤), i = 1, . . . , N , N = 50 and 300. Functions x 7→ exp(−x2/3)/29.5 (N = 50, −−) and
x 7→ exp(−x2/3)/173 (N = 300, −−).
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Figure 3: (a) Counter ki plotted as a function of xi obtained in dimension 1 after 107

trials with γ0 = 1, a = 400 and b = 10−1. The value of DN (x∗) is 1.60(-2). (b) Quantizer
obtained in 1-dimension after 107 trials with γ0 = 1, a = 400 and b = 10−3. The value of
DN (x∗) is 1.57(-2).
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Figure 4: Quantizer with N = 13 obtained after 106 trials of the randomly initialized
CLV Q algorithm (3.7) followed by MLloyd = 10 Lloyd’s method I. Except for the origin,
its components make up a regular centered pentagon and a regular centered heptagon.
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Figure 5: (a) Quantizer with N = 14 obtained from the one with N = 13 and the point 0
after 106 trials of CLV Q algorithm (3.7) with γ0 ≈ mini6=j |xi−xj |/2 followed by 10 Lloyd’s
method I. (b) Quantizer with N = 14 obtained after 106 trials of the CLV Q algorithm (3.7)
followed by MLloyd = 10 Lloyd’s methods I.
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Figure 6: (a) Quantizer with N = 500. DX
N

= 7.08(−3). Truncated case. (b) Quantizer
with N = 500. DX

N
= 8.56(−3). Non-truncated case.
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Figure 7: Optimal quantizer of Figure 6(a) with its Voronoi tessellation. Truncated case.
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Figure 8: 1000–quantizer of the Normal law in R3. The value of the distortion obtained is
DX

N
= 5.45(−2). Non truncated case.
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Figure 9: Radii of optimal quantizers in dimension d = 4, 6, 8, 10 with N from 1 200 to
1 800. Drawing of i 7→ |xi|, we can guess 4 layers of points in dimension 4, 3 in dimension
6, 2 in dimension 8 and 1 in dimension 10.
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(a) d = 2. Slope of + plot : 0.963 ≈ 1.926/d (b) d = 3. Slope of + plot : 0.658 ≈ 1.974/d
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(c) d = 4. Slope of + plot : 0.504 ≈ 2.016/d (d) d = 5. Slope of + plot : 0.417 ≈ 2.085/d
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(e) d = 6. Slope of + plot : 0.337 ≈ 2.022/d
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Figure 10: Linear regression in log-log scale of N 7→ |Eg2(Ẑ) − Êg2(Z)N |. In a) d = 2; b)
d = 3; c) d = 4; d) d = 5; e) d = 6.

28



(a) d = 2. Slope of + plot : 1.20 ≈ 2.40/d (b) d = 3. Slope of + plot : 0.692 ≈ 2.076/d

0.0001

0.001

0.01

0.1

1

10 100

QTF Error
Standard deviation MC

0.001

0.01

0.1

1

10 100

QTF Error
Standard deviation MC

(c) d = 4. Slope of + plot : 0.523 ≈ 2.092/d (d) d = 5. Slope of + plot : 0.487 ≈ 2.435/d
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(e) d = 6. Slope of + plot : 0.379 ≈ 2.274/d.
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Figure 11: Linear regression in log-log scale of N 7→ |Eg4(Ẑ) − Êg4(Z)N |. In (a) d = 2;
(b) d = 3; (c) d = 4; (d) d = 5; (e) d = 6.
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Table 1: Value of absolute error with respect to the MC standard deviation for maximal
values of N in dimension 2, 4 and 6.

d = 2 & N = 600 B&S Quantized Relative MC Absolute Error/StD
E gi(Z) Reference value value error St Dev

Lip & Conv (i = 1) 3.672905 3.66233 0.29% 2.76(-1) 0.03827
C∞ & Conv (i = 2) 3.672905 3.66776 0.14% 1.77(-1) 0.02904

Lip & DiffConv (i = 3) 1.383143 1.38388 0.05% 6.93(-2) 0.01063
C∞ & DiffConv (i = 4) 1.383143 1.38310 0.003% 4.21(-2) 0.00102

Disc (i = 0) −0.068907 −0.0689169 0.01% 9.73(-3) 0.00102
d = 4 & N = 6540 B&S Quantized Relative MC Absolute Error/StD

E gi(Z) Reference value error St Dev
Lip & Conv (i = 1) 2.076954 2.04709 1.44% 5.46(-2) 0.54762
C∞ & Conv (i = 2) 2.076954 2.06092 0.77% 3.32(-2) 0.48193

Lip & DiffConv (i = 3) 1.216210 1.21303 0.26% 2.09(-2) 0.15215
C∞ & DiffConv (i = 4) 1.216210 1.21524 0.08% 1.18(-2) 0.08186

Disc (i = 0) −0, 093039 −0, 0908095 2.40% 3.46(-3) -0.6446
d = 6 & N = 8000 B&S Quantized Relative MC Absolute Error/StD

E gi(Z) Reference value error St Dev
Lip & Conv (i = 1) 1.395727 1.29660 7.10% 3.80(-2) 2.60789
C∞ & Conv (i = 2) 1.395727 1.34381 3.72% 2.14(-2) 2.42523

Lip & DiffConv (i = 3) 1.094376 1.08037 1.28% 1.83(-2) 0.76503
C∞ & DiffConv (i = 4) 1.094376 1.08436 0.91% 1.01(-2) 0.99010

Disc (i = 0) −0.108825 −0.109751 0.85% 3.19(-3) 0.29028
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